

Fiche de capitalisation

Vers un système d'alerte précoce intégré (SAP) : le cas de DURAGIRE

Dans le delta de l'Ouémé, les inondations récurrentes mettent en péril les vies humaines et les moyens de subsistance. Il est donc essentiel d'améliorer la prévention des catastrophes. Le programme DURAGIRE vise à rendre le Système d'Alerte Précoce (SAP) plus performant, plus précis et mieux adapté aux réalités locales. En associant modélisation hydrologique, engagement communautaire et coordination interinstitutionnelle, il a permis de poser les bases d'un dispositif plus réactif et plus inclusif.

Cette capitalisation retrace les principales avancées, les défis encore à relever et les perspectives pour un système permettant d'alerter à temps et d'impliquer l'ensemble des acteurs dans la gestion des risques.

Résumé

L'accompagnement du système d'alerte précoce (SAP) dans le cadre du projet DURAGIRE a amorcé une dynamique de transformation à plusieurs niveaux : technique, institutionnel et communautaire. En facilitant la collaboration entre acteurs nationaux et locaux, en renforçant la qualité des prévisions et en élargissant la diffusion des alertes à des formats plus accessibles, le projet a contribué à bâtir un système plus inclusif et mieux ancré dans les réalités du terrain.

Les avancées observées témoignent d'un engagement partagé : des institutions nationales mieux coordonnées, des collectivités locales plus impliquées, et des communautés progressivement outillées pour anticiper et réagir aux inondations. Cette évolution, bien que prometteuse, reste à consolider. Elle repose encore sur des équilibres fragiles : des innovations techniques à stabiliser, des dispositifs locaux à renforcer, et surtout, des financements durables à sécuriser. La réussite du SAP amélioré dépendra de la capacité des acteurs à maintenir et faire vivre cette dynamique dans la durée. Cela suppose de poursuivre les efforts de formation, de renforcer l'appropriation communautaire, d'institutionnaliser les bonnes pratiques, et d'assurer une gouvernance partagée à tous les niveaux.

1. Introduction

1.1 Mise en place du système d'alerte au Bénin

Le Bénin est confronté à des inondations récurrentes, notamment dans le delta de l'Ouémé, avec des impacts sur les populations et les activités économiques. Depuis 1970, 22 événements majeurs ont été enregistrés, dont celui de 2010 qui a touché 55 communes. L'impact de ces inondations est amplifié par les effets du changement climatique, la déforestation, une urbanisation peu maîtrisée et une faible gouvernance des risques, rendant les populations encore plus vulnérables.

Depuis 1998, la GIRE a été introduite au Bénin pour mieux gérer les risques liés aux événements climatiques extrêmes. Le premier SAP a vu le jour en 2014 avec le projet SAP-Bénin, financé par l'Union européenne. Il reposait sur la coordination entre la Direction générale de l'eau (DG Eau), l'Agence nationale de la protection civile (ANPC), devenue l'Agence béninoise de la protection civile (ABPC) et les plateformes communautaires de réduction des risques. Bien que ce système ait posé les bases d'un dispositif national, il reste limité dans sa capacité à atteindre les groupes les plus vulnérables et à assurer véritablement la sécurité des personnes et des activités socioéconomiques.

Un SAP repose sur quatre piliers : la connaissance des risques, la surveillance et la prévision, la diffusion des alertes, et la préparation à la réponse. Ces composantes doivent être articulées dans un dispositif intégré, accessible et inclusif.

2. Diagnostic du système d'alerte précoce (SAP)

2.1 Méthodologie

Le projet DURAGIRE a mené un diagnostic participatif du SAP en impliquant les institutions nationales, les communes et les plateformes locales. Un questionnaire a permis de recueillir les perceptions des parties prenantes sur les forces et faiblesses du système en place depuis 2014. Ce diagnostic a révélé un manque d'articulation entre le SAP technique (SAP-T) et le SAP communautaire (SAP-C), ainsi qu'une faible circulation de l'information du niveau local au niveau national. Ces constats ont été

approfondis lors d'un atelier multi-acteurs les 20 et 21 juin 2024, qui a permis de partager une vision commune pour l'amélioration du système et de définir des actions concrètes.

2.2 Fonctionnement du SAP actuel

Le SAP repose sur un cadre interinstitutionnel structuré autour de la Cellule interinstitutionnelle de prévision et d'alerte (CIPA)⁴, supervisée par la DGEau. Plusieurs institutions y contribuent : Météo-Bénin, la Direction générale de l'eau (DGEau), l'Institut de recherches halieutiques et océanologiques du Bénin (IRHOB), l'Institut national de l'eau (INE), la Direction des systèmes d'information (DSI), la Direction générale de l'environnement et du climat (DGEC) et l'Agence béninoise de la protection civile (ABPC).

Le système s'appuie sur un réseau de 68 stations hydrométriques, dont huit sont prioritaires pour le SAP (à Bétérou, Savè, Kaboua, Atchérigbé, Zangnanado, Bonou, Athiémé et Malanville). Les données sont transmises automatiquement à un serveur central à Akpakpa, puis analysées pour produire des seuils d'alerte codés par couleur, selon l'intensité du risque. Depuis 2020, l'outil SAPI-Bénin, développé par la DGEau, permet de générer des bulletins d'alerte à destination des autorités et des populations. Il combine deux modèles :

- a. **SAPI-G**, fondé sur GloFAS (Global Flood Awareness System), anticipe les crues jusqu'à 12 jours à l'avance ;
- b. **SAPI-Q**, alimenté par les données locales des stations, permet des prévisions plus fines à trois jours.

Les bulletins produits par la DGEau sont validés par la CIPA, puis transmis à l'ABPC, qui les diffuse à la Plateforme nationale RRC ACC et aux autorités locales. En cas de risque élevé, le ministre de l'Intérieur peut alerter directement les populations. Le SAP technique a gagné en efficacité grâce aux projets SAP-Bénin et OmiDelta, qui ont renforcé sa capacité d'anticipation.

Mis en place par VNGi via OmiDelta, le SAP communautaire quant à lui, vise à renforcer la réponse locale. Il repose sur :

¹ Respectivement, l'organisation néerlandaise de développement (SNV), l'Agence de coopération internationale de l'Association des municipalités néerlandaises (VNGi), VNG est l'organisation faîtière de toutes les municipalités des Pays-Bas et l'Association nationale des communes du Bénin (ANCB).

² Financière, environnementale, technique et sociale.

³Omidelta est une initiative lancée en 2017 et financée principalement par l'Ambassade du Royaume des Pays-Bas pour soutenir le secteur de l'eau et de l'assainissement.

⁴La CIPA regroupe plusieurs institutions clés impliquées dans la gestion des risques climatiques et des catastrophes naturelles. Ces institutions collectent, stockent, analysent et diffusent les données essentielles pour la surveillance des aléas.

- des plateformes locales de réduction des risques de catastrophe et d'adaptation au changement climatique (RRC ACC);
- des balises en béton armé implantées à des points stratégiques, avec codes couleur visibles;
- une application mobile de pré-alerte pour transmettre les observations à l'ABPC et aux communes.

Fortement ancré dans le tissu social local, ce dispositif s'appuie sur des figures locales de confiance (chefs de village), ce qui favorise l'adhésion des populations et une circulation efficace des alertes.

2.3 Avantages et limites du SAP actuel

Le SAP permet d'anticiper les crues plusieurs jours à l'avance grâce à un réseau étendu de stations qui collectent des données sur les précipitations et les niveaux d'eau en temps réel et à l'utilisation de modèles performants qui améliorent la fiabilité des alertes. Il génère des bulletins réguliers qui facilitent la prise de décision. L'intégration progressive de la dimension communautaire constitue un atout supplémentaire pour une meilleure réactivité locale. La mise en place de balises hydrométriques dans certains villages, l'implication des plateformes locales et le développement d'outils de pré-alerte mobile marquent un tournant important vers un dispositif plus participatif.

Cependant, malgré ses atouts, le SAP reste limité sur plusieurs aspects :

Des données hydrométéorologiques limitées: Le système manque de données fiables et centralisées. La connectivité faible entre stations et bases nationales nuit à la cohérence. L'absence de mesures précises en temps réel sur des paramètres clés (niveaux d'eau, précipitations, élévation) limite la qualité des prévisions.

Un déficit de communication et d'intégration des données locales : Les données issues du SAP communautaire sont souvent incomplètes ou inutilisables. L'absence d'échelles sur les balises empêche d'estimer la profondeur de l'eau. Ces données ne sont pas encore intégrées au SAP technique, limitant leur prise en compte.

Des infrastructures défaillantes : De nombreuses stations et balises sont en mauvais état ou mal entretenues. Vandalisme, problèmes fonciers et manque de sensibilisation contribuent à la situation. D'autres failles concernent l'alimentation énergétique, l'absence de serveurs et le non-respect des protocoles d'échange.

Une coordination insuffisante entre acteurs locaux et nationaux : Le lien entre structures centrales et plateformes locales reste irrégulier. Le manque d'un cadre formel et durable freine la circulation de l'information et la prise de décision partagée.

Une diffusion des alertes inadaptée aux réalités locales: Le circuit de diffusion, via WhatsApp, points focaux et pairs éducateurs, reste vulnérable, notamment dans les zones isolées. Les formats utilisés (SMS, radio) sont parfois inaccessibles aux personnes non lettrées, handicapées ou mal desservies. L'absence de supports inclusifs limite la portée des messages.

Une appropriation communautaire encore partielle:

Le manque d'exercices, de formations et de moyens limite l'engagement des communautés. Insuffisamment outillées, les plateformes locales ont du mal à jouer leur rôle dans la chaîne d'alerte.

Une pérennité financière à assurer : Le SAP ne dispose pas encore d'un mécanisme de financement durable. Sans modèle économique clair, l'entretien des infrastructures, la mise à jour des outils et la continuité du service sont menacés.

« Les bulletins d'alerte que nous recevons restent trop génériques : par exemple, une alerte rouge peut être annoncée pour l'ensemble d'une commune comme Zagnanando, alors que certains villages ou arrondissements sont effectivement inondés, et d'autres non. Cela rend difficile une évaluation précise et localisée de la situation. »

Paul KASSINHIN

Directeur régional sud de l'ABPC

3 Mesures d'amélioration du SAP

3.1 Identification des zones vulnérables et classification des risques

Le programme DURAGIRE a conduit, en partenariat avec VNGi, RHDHV et l'Institut national de l'eau (INE), une série d'études complémentaires visant à mieux caractériser les zones à risque et à affiner leur classification. Ce processus s'est déroulé en quatre étapes :

Recensement des zones vulnérables : Des questionnaires adressés aux points focaux des plateformes communales RCC ACC ont permis de dresser une première liste de villages exposés, recoupée avec les données de l'ABPC.

Étude de vulnérabilité participative : VNGi a mené des enquêtes de terrain intégrant des critères comme le niveau d'éducation, la pauvreté, le genre ou l'âge, afin de construire un indice local de vulnérabilité.

Analyse croisée des risques et modélisation : L'INE et RHDHV ont combiné cette analyse avec les données issues des modèles HEC-HMS et HEC-RAS pour identifier les zones les plus à risque et établir une cartographie détaillée des aléas, de l'exposition et de la capacité d'adaptation.

Classification des villages: Les résultats ont permis de classer les villages par niveau de risque, pour orienter les priorités d'intervention et d'équipement en fonction des besoins des communautés les plus exposées.

3.2 Amélioration des services de surveillance et d'alerte

Les nouvelles améliorations du SAP visent à renforcer la fiabilité des prévisions, leur accessibilité et leur pertinence locale. Elles s'articulent autour des actions suivantes conçues en partenariat avec par VNGi, Royal Haskoning DHV (RHDHV) et l'Institut national de l'eau (INE), à travers une collaboration technique soutenue.

Installation de balises intelligentes: 103 balises hydrométriques graduées, géoréférencées et codées par couleur ont été installées dans les zones les plus exposées. Elles permettent un suivi en temps réel, renforçant l'interface entre le SAP communautaire et le SAP technique.

Modélisation plus précise: Deux modèles - hydrologique et hydrodynamique - (HEC-HMS pour les prévisions à 14 jours, et HEC-RAS pour les cartographies détaillées) permettent d'anticiper les crues et de visualiser finement les zones à risque. Les équipes de l'INE ont été formées à leur utilisation pour assurer leur appropriation locale.

Alertes plus ciblées: En croisant les données des modèles et des balises, les alertes sont désormais adressées à 56 villages et ciblent des points stratégiques, incluant des infrastructures critiques telles que les écoles, les centres de santé, les routes, etc.

Intégration environnementale renforcée: Les données météorologiques des satellites (GPM, GFS), les relevés topographiques, et la cartographie des infrastructures hydrauliques (digues, barrages) sont désormais intégrés dans les simulations, rendant les prévisions plus réalistes.

Partenariat pour la sécurisation des données : La Direction des services d'information (DSI), l'Agence des systèmes d'information et du numérique (ASIN) et la Société béninoise d'infrastructures numériques (SBIN) travaillent ensemble à garantir la fiabilité et la sécurisation des flux numériques. Ce cadre permet également le développement d'applications pour une diffusion plus rapide des alertes.

« Avec l'appui de DURAGIRE, un système d'alerte intégré et bidirectionnel est en cours de développement. Il permet de recueillir un retour direct des communautés grâce aux informations produites par la CIPA et transmises via des balises installées aux points d'entrée des cours d'eau. Ces balises fournissent des données en temps réel, à une échelle plus fine, couvrant désormais les arrondissements et les villages. »

Paul KASSINHIN

Directeur régional sud de l'ABPC

3.3 Renforcement des capacités locales de réponse

Dans le cadre des projets DURAGIRE et SDLG⁵, VNGi a contribué à opérationnaliser 55 plateformes locales RRC ACC, conformément au décret de 2011. Ces plateformes, composées de 9 à 11 membres désignés lors d'assemblées villageoises, sont au cœur de la prévention, de la diffusion des alertes et de la coordination locale des secours. Ils ont bénéficié de formations ciblées sur leurs rôles, les premiers secours et l'utilisation des matériels dont ils ont été dotés (gilets, mégaphones ou piles). En 2024, 89 pairs éducateurs et secouristes ont été formés dans 56 villages, et près de 7 885 personnes ont été sensibilisées dans 86 villages de 13 communes.

« J'ai beaucoup apprécié la formation sur les gestes de premiers secours. Je suis point focal RRC ACC depuis 2020, mais je n'avais jamais été formé à ces situations. Cette formation m'a donné les connaissances concrètes pour agir en cas de noyade ou d'incendie. »

Léon AHOUANDJINOU

PF RRC ACC, commune des Aguégués

En parallèle, le projet appuie l'actualisation des plans communaux de contingence en partenariat avec l'ABPC et l'ONG GBEWA à travers l'ANCB. Le processus inclut la révision participative des plans, leur validation officielle, des simulations et la mise en place de mécanismes de financement. Sept plans ont déjà été finalisés, et sept autres sont en cours. À terme, le dispositif reposera sur le réseau territorial de l'ABPC, avec ses 12 antennes départementales et la mise en place envisagée de centres communaux de protection civile.

4 Changements et impacts espérés

4.1 Changements observés

Bien que le projet soit toujours en cours de mise en œuvre, des transformations tangibles sont déjà perceptibles. Le système d'alerte gagne en pertinence, en réactivité et en coordination grâce à plusieurs évolutions.

⁵ Le projet « Développement durable pour l'amélioration de la gouvernance locale » mis en œuvre par VNGi et financé par l'ambassade du Royaume des Pays Bas vise à renforcer la gestion intégrée des ressources en eau dans cinq communes de la Basse Vallée de l'Ouémé pour la période 2024 - 2026.

Les bulletins d'alerte ont été retravaillés pour devenir plus clairs, localisés, précis et utiles aux communautés. La création de groupes WhatsApp entre acteurs nationaux, communaux et communautaires a accéléré la transmission des alertes tout en facilitant le retour d'information depuis le terrain. Les échanges sont désormais plus interactifs, renforçant la dimension ascendante du SAP. Les plateformes locales (PL RRC ACC) sont aussi mieux connectées aux antennes de l'ABPC, améliorant leur intégration dans les dispositifs de réponse.

« Avant le programme DURAGIRE, les alertes sur les inondations mettaient du temps à parvenir aux communautés. Depuis l'atelier de coconstruction du système, plusieurs problèmes ont été résolus. L'échange d'informations est désormais effectif entre les acteurs nationaux et locaux, avec une réduction sensible des délais de transmission grâce aux réseaux sociaux, aux SMS et aux plateformes locales. »

Victor OGOUOLA

Directeur des affaires domaniales et environnementales, commune de Bonou

Sur le plan institutionnel, une gouvernance plus concertée s'installe progressivement. La DGEau, Météo-Bénin et l'ABPC échangent désormais régulièrement pour harmoniser leurs interventions et définir ensemble les évolutions du SAP. Cette dynamique favorise une meilleure coordination des rôles et renforce l'efficacité du système national d'alerte.

4.2 Impacts espérés à plus long terme

Bien que les premiers résultats soient encourageants, il faudra davantage de temps pour mesurer pleinement les effets du projet, notamment en ce qui concerne le renforcement de la résilience locale, l'évolution des relations institutionnelles et l'autonomisation des communautés dans la gestion des risques. Ces effets sont déclinés ci-dessous :

Un système plus performant adapté aux réalités

locales: L'un des principaux effets attendus est l'émergence d'un SAP plus précis, fiable et enraciné dans les réalités locales. L'intégration des modèles HEC-HMS et HEC-RAS permet désormais de produire des prévisions plus fines, jusqu'au niveau village, en s'appuyant sur une meilleure connaissance des vulnérabilités et des caractéristiques environnementales.

En parallèle, la diversification des canaux de diffusion (SMS, radio, WhatsApp, affichage) et la simplification des messages, notamment en langues locales, devraient renforcer l'accessibilité de l'information pour les populations les plus vulnérables. À terme, ces progrès visent à garantir une alerte compréhensible, reçue à temps, et utile pour agir efficacement face aux risques.

Une capacité de réponse accrue au niveau communautaire: Les améliorations du système d'alerte devraient permettre aux populations d'anticiper plus efficacement les inondations, de protéger leurs biens et d'évacuer à temps. Cette capacité repose sur la structuration des PL RRC ACC, la formation de pairs éducateurs et de secouristes, les campagnes de sensibilisation, les exercices de simulation et l'actualisation des plans communaux de contingence. Ces plans, articulés au Fonds National de réponse aux Catastrophes (FONCAT), favoriseront des réponses locales plus rapides et coordonnées.

Une implication renforcée des collectivités locales:

Les communes sont appelées à jouer un rôle plus actif dans la gestion du SAP. Grâce à DURAGIRE, leurs responsabilités sont désormais mieux définies, notamment en ce qui concerne l'entretien des infrastructures, la coordination locale et l'adaptation des messages d'alerte. Le renforcement des capacités des services municipaux et des relais communautaires favorise une meilleure articulation entre niveaux institutionnels, tout en facilitant une communication plus inclusive et adaptée aux publics vulnérables.

Une protection renforcée des personnes, des moyens de subsistance et des territoires : À terme, le système vise à limiter les pertes humaines, économiques et sociales liées aux inondations. Des alertes plus précises permettront aux populations d'ajuster leurs pratiques agricoles ou halieutiques en fonction des prévisions. La protection des infrastructures essentielles, la sécurité alimentaire, et une planification plus résiliente de l'aménagement du territoire devraient être mieux assurés, renforçant ainsi la résilience globale des zones à risque.

5 Leçons apprises et perspectives

5.1 Facteurs de succès

Le projet DURAGIRE a contribué à la co-construction d'un système d'alerte précoce (SAP) plus intégré et efficace, en renforçant à la fois le volet technique national (SAP-T) et le maillage communautaire (SAP-C). Cette mise en synergie a amorcé une transformation structurelle du système. Parmi les facteurs de succès, la qualité des partenariats au sein du consortium a été essentielle. La collaboration entre Royal Haskoning

DHV et l'Institut national de l'eau (INE) pour le volet technique, et entre VNGi, SNV et l'ANCB pour le volet communautaire, a permis un partage d'expertises cohérent et complémentaire.

Le rôle de facilitateur du projet s'est révélé central. L'équipe DURAGIRE n'a pas imposé de solutions, mais a accompagné les acteurs dans un processus d'appropriation et d'adaptation, en respectant leurs réalités locales. Cette approche s'est traduite par des diagnostics participatifs qui ont permis aux institutions et collectivités de formuler leurs propres constats et priorités. Elle a aussi renforcé la coopération entre niveaux national et local, en améliorant la circulation de l'information et la coordination entre la DGEau, l'ABPC, les communes et les plateformes locales RRC ACC. L'attention portée à l'inclusivité – balises visuelles, messages d'alerte simplifiés et formats accessibles – a permis une meilleure prise en compte des besoins des populations vulnérables.

Cependant, cette dynamique reste en partie inachevée. Certaines innovations techniques ou institutionnelles ne sont pas encore stabilisées ou généralisées. Leur consolidation dépend d'un engagement plus fort en matière de structuration institutionnelle, de sécurité des données et surtout de financement durable. Le projet a ainsi posé les bases d'un changement significatif, mais le travail d'apprentissage et de consolidation se poursuit.

5.2 Des défis à relever

Le défi du financement durable

Malgré les progrès réalisés par DURAGIRE, l'un des principaux défis reste l'absence d'un mécanisme de financement pérenne pour garantir la continuité et l'efficacité du SAP, en particulier au niveau communautaire. L'entretien des balises, la mise à jour des outils numériques et l'équipement des plateformes locales exigent des ressources régulières. Une réflexion a été amorcée lors d'un atelier interinstitutionnel sur les options de financement durable, mais la mise en œuvre de solutions concrètes nécessite un engagement conjoint de l'État, des collectivités et des partenaires techniques et financiers. Sans modèle économique structuré, les avancées techniques et institutionnelles du SAP risquent de ne pas être consolidées dans la durée.

Rendre les alertes plus accessibles

Le circuit actuel de diffusion s'appuie sur des groupes WhatsApp pour transmettre les alertes du niveau national aux communautés via les points focaux, pairs éducateurs et secouristes. Bien qu'efficace dans certaines zones, ce système reste limité dans les localités isolées ou auprès de populations peu lettrées, souvent sans accès à Internet ou à des outils numériques. Pour toucher ces publics, il est essentiel de recourir à des canaux

complémentaires comme les SMS sur téléphones basiques, avec des sonneries codées. D'autres solutions — messages vocaux, radios communautaires, signaux sonores ou visuels, panneaux d'affichage — doivent être davantage utilisées pour assurer une alerte inclusive, rapide et accessible à tous, sans coût pour les utilisateurs.

Fiabiliser et enrichir les données de prévision

La qualité du SAP dépend directement de la robustesse et de la diversité des données hydrométéorologiques. Il est crucial de renforcer la collaboration entre la DGEau, Météo-Bénin et l'IRHOB pour améliorer le partage d'informations et alimenter plus efficacement les modèles de prévision. L'intégration de données plus fines issues du terrain, ainsi qu'une meilleure prise en compte de facteurs environnementaux comme la sédimentation ou les changements d'occupation des sols, contribuera à ajuster les seuils d'alerte et fiabiliser les prévisions de crues.

Un rôle renforcé pour les communes et une appropriation locale accrue

Pour assurer la durabilité du SAP, les communes doivent être davantage impliquées dans sa gestion. Or, les responsabilités liées à l'entretien des infrastructures, comme les balises, restent encore mal définies. Il est essentiel d'identifier clairement les acteurs responsables de leur maintenance et de conditionner toute nouvelle installation à la réhabilitation de l'existant. Le renforcement du rôle des communes dans la coordination, la planification et la mobilisation des ressources est indispensable. De même, l'appropriation communautaire du système reste partielle. Pour que le SAP soit considéré comme utile, il convient d'intensifier la sensibilisation, les formations et l'accompagnement des acteurs locaux, avec des messages adaptés aux contextes culturels et sociaux.

Une protection encore insuffisante des populations vulnérables

Dans le delta de l'Ouémé, de nombreuses populations restent très exposées aux inondations, sans moyens d'anticipation ou d'évacuation suffisants. Les femmes, enfants, personnes âgées ou en situation de handicap sont les plus touchés, subissant les effets secondaires des crues comme l'interruption des services ou la perte de revenus. Renforcer leur résilience exige des actions ciblées : protection sociale, sécurisation des moyens de subsistance, et prise en compte explicite de leurs besoins dans les stratégies d'adaptation.

5.3 Perspectives pour un SAP plus efficace et inclusif

Renforcer la communication et la diffusion des alertes

Les prochaines étapes visent à consolider les acquis et à garantir la pérennité du SAP, en renforçant son appropriation locale. Parmi les actions prioritaires figure l'actualisation de l'application de pré-alerte développée sous Omidelta. Cette version améliorée permettra d'envoyer des prévisions localisées par village et de recueillir les observations remontées par les plateformes locales. Les contacts des référents y seront intégrés pour faciliter les échanges en cas d'incident. Un nouveau format de bulletin d'alerte, simplifié et enrichi (graphiques, tableaux, images), sera co-construit avec les acteurs. Il visera à améliorer la lisibilité, raccourcir les délais de production, et garantir une diffusion rapide et compréhensible des alertes, notamment en réduisant le nombre d'intermédiaires.

Tester le nouveau SAP lors de la saison des crues 2025

Un test grandeur nature est prévu durant la saison des crues 2025 pour évaluer le fonctionnement du SAP intégré. Il portera sur les volets technique (modèles HEC-HMS et HEC-RAS, échanges de données, gestion des informations) et communautaire (transmission et réception des alertes via les nouveaux canaux). Ce test permettra d'identifier les lacunes, d'ajuster les outils et de renforcer l'appropriation du système par les acteurs concernés.

Renforcer la sécurité des populations les plus exposées

Au-delà des alertes, des mesures complémentaires sont nécessaires : plans de relocalisation dans les zones à haut risque, dispositifs de protection sociale (filets de sécurité, soutien ciblé), et investissements dans des infrastructures de résilience (digues, abris, bassins de rétention). Ces actions visent à mieux protéger les populations et leurs moyens de subsistance, et à réduire les pertes économiques liées aux inondations.

Vers un financement pérenne et une mise à l'échelle

La pérennité du SAP repose sur la mise en place de mécanismes financiers durables. Le comité de pilotage du projet a amorcé un plaidoyer en ce sens auprès des autorités nationales. Des engagements ont été pris pour transférer progressivement certaines responsabilités vers l'État, avec l'appui de quelques partenaires budgétaires. L'un des enjeux clés concerne l'élargissement du mandat du Fonds national de réponse aux catastrophes (FONCAT), actuellement centré sur l'urgence, pour y inclure les volets de prévention et de préparation aux risques.

L'approche intégrée développée avec DURAGIRE est conçue pour être étendue à d'autres bassins versants du Bénin. Un plaidoyer est en cours pour mobiliser les partenaires techniques et financiers en faveur d'une diffusion du dispositif dans les zones vulnérables de l'Ouémé, du Mono, du Niger et de la Pendjari. Cette extension vise à renforcer la résilience de l'ensemble des territoires exposés aux risques climatiques.

À propos de DURAGIRE : DURAGIRE (2024-2026) renforce la résilience des populations du delta de l'Ouémé face aux risques liés à l'eau et au climat. Successeur d'OmiDelta, il agit sur 4 axes : gouvernance GIRE, organisation locale, investissements durables et système d'alerte précoce. Financé par les Pays-Bas, il est porté par SNV, VNGI et ANCB avec leurs partenaires.

Citation : DURAGIRE (2025). Vers un Système d'Alerte Précoce intégré (SAP). *Fiche de capitalisation*. SNV.

Contactez-nous:

SNV benin@snv.org

www.snv.org/country/benin

VNGI vng-international@vng.nl

www.vng-international.nl

ANCB info.ancb@ancb.bj

www.ancb.bj

